Syntactic Analysis:
Top-down parsing

Main ideas

e Parsing: check for grammatical correctness and determine a
sentence’s phrase structure

* Formal approaches to describing syntax
* Recognizer
* Generators

» Study derivation process to find a way to synchronize the
derivation steps with a scan through the token string

* Predictive recursive-descent parsing: an important variation of
top-down parsing (simple, effective)
* Requirements for a predictive recursive-descent parser:

* Unambiguous grammar
* LL(1): remove left-recursion, left-factoring, first/follow sets

Top-down parsing

* LL parsing: parse the input scanning tokens from Left to right, doing a
Leftmost derivation.

Technigue: try to match pattern (from grammar rules) with target string
* Begin current pattern with the start symbol

e Pattern starts with a non-terminal?
* Replace it with the right-hand side of its grammar rule
e Can require backtracking if we expand the wrong right-hand side!!

e Pattern starts with a terminal? Check if it matches the next token on the
target string.
* Yes? Consume the token and remove the terminal from the pattern.
* No? There is an error.

* |f both the pattern and target strings are empty, then the parse
succeeds.

Top-down parsing

Top-down parse of string: (a,a)

1 P — “(CsS)
2SS —- X ‘72X
3 X

— ‘a’

Grammar rules

Pattern string Target string
P (a, a)

(S) (a, a) pé(s)

LS) fa, a)
(X, X) fa, a) 2
La, X) La,a) T'(X’X)
L4, X) L4 ,a) = (a, X)
L4/ X) L&/ a)
L4/ a) L4/ a) .
L& /&) L&/ &) = (a, a)
L&/ 4d) L&A

(a) Top-down parse (b) Derivation

LL(O) and LL(1)

1 P — ‘(8 <)
L P = sy 28 - X X
23—>)‘<:,’x 3 X — ‘g
3 X — a 4 — ‘Dp?

e Each non-terminal has a e Some non-terminals have

single production. multiple productions.

* No lookahead needed to Alookahead is needed to

know which production to know which production to

apply. apply

LL(k) — looks ahead k tokens.

A top-down parser is also referred to as a predictive parser
because there’s the possibility of having to predict which of
multiple rules to apply by doing a lookahead.

Top-down parsing

Recursive-descent parsing

* Atop-down strategy

e Each non-terminal N in the grammar is implemented as a method
parseN ()

* Method is responsible for parsing a single N-phrase (a right-hand side for a
non-terminal N)

* Decides what to do next based on its understanding of the grammar and
the value of the current token

* Requires backtracking if we follow a false trail

Example: micro-English

Sentence ::= Subject Verb Object

Subject .= me | a Noun | the Noun

Object .= me | a Noun | the Noun

Noun ;= cat | mat | rat

Verb .= like | is | see | sees

private void parseSentence () { // Sentence ::=
parseSubject () ; // Subject
parseVerb () ; // Verb
parseObject () ; // Object

accept (‘.7); //

Top-down parsing

Predictive Recursive Descent Parsing

* Want to avoid backtracking; requires knowing which production
rule to apply next

* Given the current symbol g, the non-terminal A to be expanded,
and alternatives of production A = a4| a5| ... | a;,, which is the
unique alternative that derives a string beginning with a?

e Key to this is having an LL(1) grammar: Left to right scan of input
symbols doing a Leftmost derivation using 1 symbol of lookahead

First and follow sets:

* First set: what terminals can begin strings derivable from some
terminal A

* Follow set: what terminals can immediately follow some terminal
A

What makes a grammar LL(1)?

For a grammar to be LL(1), we have the following requirements for
every pair of productions A = «a|

e First(a) — {€} and First(f) — {€} must be disjoint

e If a is nullable (goes to €), then First(f) and Follow(A) must be
disjoint.

Remember:

* First set: what terminals can begin strings derivable from some
terminal A

* Follow set: what terminals can immediately follow some terminal
A

Generating the First Sets

e First(e) = {e}

« First(t) = {t} where t is a terminal symbol

e First(XY) = First(X) U First(Y) if X generates €
e First(XY) = First(X) if X does not generate €

e First(X |Y) = First(X) U First(Y)

o First(X*) = First(X)

First Set Example

Generate the First set for the following grammar
A—-BDi|D

B - Calce

C-b

D—-c

Do as an exercise.

First(e) = {e}

First(t) = {t} where t is a terminal symbol
First(XY) = First(X) U First(Y) if X generates €
First(XY) = First(X) if X does not generate €
First(X |Y) = First(X) U First(Y)

First(X*) = First(X)

Generating the Follow sets

* Place $in Follow(S) where S is the start symbol and $ is the
input right end marker

* Ifthereis a production A — aBf, then everything in First(f)
except for € is placed in Follow(B)

* If thereis a production A = aB or a production A = aBf where
First(f) contains €, then everything in Follow(A) is in
Follow(B)

Follow Set Example

Generate the Follow set for the following grammar
A—-BDi|D

B - Calce

C-b

D—-c

Do as an exercise.
* Place $in Follow(S) where S is the start symbol and $ is the input right end marker

 |f thereis a production A = aBf, then everything in First(f) except for € is placed in
Follow(B)

* |If thereis a production A = aB or a production A = aBf where First(f) contains €,
then everything in Follow(A) isin Follow(B)

Left Recursive Grammars

A grammar is left-recursive if it has a non-terminal A such that
there is a derivation A = Aa for some string «

Bad for a recursive decent parser - why?
Consider the parse method for A = ABc

private void parseA() { // A::

parseA(); // A
parseB(); // B
accept(‘¢’); // c
}
Need to eliminate the left recursion
A—> BA’

A—> A4
B = A'—>od'| €

Eliminate Left-Recursion

* What’s wrong with the following?

Command ::= single-Command | Command; single-Command

* Look at the First sets produced:
First(Command) = { Identifier, if, while, let, begin}
First(single-Command) = {Identifier, if, while, let, begin }

* Eliminate the left recursion to produce:

Command ::= single-Command (; single-Command)*

Left-Recursion Example

Eliminate the left-recursion in the following grammar

(ODE-E+T|T
2)T->T*F|F
(3) F — (E) | Identifier

(1) E—» TP
(2) P> +TP]|e
3) T— FQ

(4 Q>*FQ]Je
(5) F — (E)| Identifier

Now generate the First
and Follow sets.

Is the grammar LL(1)?

Do Left-factoring

* Consider the following:
stmt ::= 1f expr then stmt else stmt

| 1f expr then stmt

* When the parser receives the if token, it does not know which
alternative to select

* Rewrite the grammar to eliminate the confusion

e How is this different from left-recursion?

Top-down parsing

17

