
Syntactic Analysis:
Top-down parsing

Main ideas
• Parsing: check for grammatical correctness and determine a

sentence’s phrase structure
• Formal approaches to describing syntax

• Recognizer
• Generators

• Study derivation process to find a way to synchronize the
derivation steps with a scan through the token string
• Predictive recursive-descent parsing: an important variation of

top-down parsing (simple, effective)
• Requirements for a predictive recursive-descent parser:

• Unambiguous grammar
• LL(1): remove left-recursion, left-factoring, first/follow sets

Top-down parsing 2

Top-down parsing
• LL parsing: parse the input scanning tokens from Left to right, doing a

Leftmost derivation.

Technique: try to match pattern (from grammar rules) with target string
• Begin current pattern with the start symbol
• Pattern starts with a non-terminal?

• Replace it with the right-hand side of its grammar rule
• Can require backtracking if we expand the wrong right-hand side!!

• Pattern starts with a terminal? Check if it matches the next token on the
target string.
• Yes? Consume the token and remove the terminal from the pattern.
• No? There is an error.

• If both the pattern and target strings are empty, then the parse
succeeds.

Top-down parsing 3

Top-down parse of string: (a,a)

Top-down parsing 4

Grammar rules

LL(0) and LL(1)

• Some non-terminals have
multiple productions.
• A lookahead is needed to

know which production to
apply

Top-down parsing 5

• Each non-terminal has a
single production.
• No lookahead needed to

know which production to
apply.

LL(k) – looks ahead k tokens.
A top-down parser is also referred to as a predictive parser
because there’s the possibility of having to predict which of

multiple rules to apply by doing a lookahead.

Recursive-descent parsing
• A top-down strategy

• Each non-terminal N in the grammar is implemented as a method
parseN()
• Method is responsible for parsing a single N-phrase (a right-hand side for a

non-terminal N)
• Decides what to do next based on its understanding of the grammar and

the value of the current token

• Requires backtracking if we follow a false trail

Top-down parsing 6

Example: micro-English
Sentence ::= Subject Verb Object .
Subject ::= me | a Noun | the Noun
Object ::= me | a Noun | the Noun
Noun ::= cat | mat | rat

Verb ::= like | is | see | sees

Top-down parsing 7

private void parseSentence() { // Sentence ::=
parseSubject(); // Subject
parseVerb(); // Verb
parseObject(); // Object
accept(ʻ.ʼ); // .

}

Predictive Recursive Descent Parsing
• Want to avoid backtracking; requires knowing which production

rule to apply next
• Given the current symbol a, the non-terminal A to be expanded,

and alternatives of production 𝐴 → 𝛼! 𝛼" … | 𝛼#, which is the
unique alternative that derives a string beginning with a?
• Key to this is having an LL(1) grammar: Left to right scan of input

symbols doing a Leftmost derivation using 1 symbol of lookahead

First and follow sets:
• First set: what terminals can begin strings derivable from some

terminal A
• Follow set: what terminals can immediately follow some terminal

A
Top-down parsing 8

What makes a grammar LL(1)?
For a grammar to be LL(1), we have the following requirements for
every pair of productions 𝐴 → 𝛼| 𝛽
• 𝐹𝑖𝑟𝑠𝑡 𝛼 − {𝜖} and 𝐹𝑖𝑟𝑠𝑡 𝛽 − {𝜖} must be disjoint
• If 𝛼 is nullable (goes to 𝜖), then 𝐹𝑖𝑟𝑠𝑡 𝛽 and 𝐹𝑜𝑙𝑙𝑜𝑤(𝐴) must be

disjoint.

Remember:
• First set: what terminals can begin strings derivable from some

terminal A
• Follow set: what terminals can immediately follow some terminal

A

Top-down parsing 9

Generating the First Sets
• 𝐹𝑖𝑟𝑠𝑡 𝜖 = 𝜖

• 𝐹𝑖𝑟𝑠𝑡 𝑡 = 𝑡 where 𝑡 is a terminal symbol

• 𝐹𝑖𝑟𝑠𝑡 𝑋 𝑌 = 𝐹𝑖𝑟𝑠𝑡 𝑋 ∪ 𝐹𝑖𝑟𝑠𝑡 𝑌 if X generates 𝜖

• 𝐹𝑖𝑟𝑠𝑡 𝑋 𝑌 = 𝐹𝑖𝑟𝑠𝑡 𝑋 if X does not generate 𝜖

• 𝐹𝑖𝑟𝑠𝑡 𝑋 | 𝑌 = 𝐹𝑖𝑟𝑠𝑡 𝑋 ∪ 𝐹𝑖𝑟𝑠𝑡 𝑌

• 𝐹𝑖𝑟𝑠𝑡 𝑋∗ = 𝐹𝑖𝑟𝑠𝑡 𝑋
Top-down parsing 10

First Set Example
Generate the First set for the following grammar
𝐴 → 𝐵𝐷𝑖 | 𝐷
𝐵 → 𝐶𝑎 | ϵ
𝐶 → 𝑏
𝐷 → 𝑐

Do as an exercise.
• 𝐹𝑖𝑟𝑠𝑡 𝜖 = 𝜖
• 𝐹𝑖𝑟𝑠𝑡 𝑡 = 𝑡 where 𝑡 is a terminal symbol
• 𝐹𝑖𝑟𝑠𝑡 𝑋 𝑌 = 𝐹𝑖𝑟𝑠𝑡 𝑋 ∪ 𝐹𝑖𝑟𝑠𝑡 𝑌 if X generates 𝜖
• 𝐹𝑖𝑟𝑠𝑡 𝑋 𝑌 = 𝐹𝑖𝑟𝑠𝑡 𝑋 if X does not generate 𝜖
• 𝐹𝑖𝑟𝑠𝑡 𝑋 | 𝑌 = 𝐹𝑖𝑟𝑠𝑡 𝑋 ∪ 𝐹𝑖𝑟𝑠𝑡 𝑌
• 𝐹𝑖𝑟𝑠𝑡 𝑋∗ = 𝐹𝑖𝑟𝑠𝑡 𝑋

Top-down parsing 11

Generating the Follow sets
• Place $ in 𝐹𝑜𝑙𝑙𝑜𝑤(𝑆) where 𝑆 is the start symbol and $ is the

input right end marker

• If there is a production 𝐴 → 𝛼𝐵𝛽, then everything in 𝐹𝑖𝑟𝑠𝑡(𝛽)
except for 𝜖 is placed in 𝐹𝑜𝑙𝑙𝑜𝑤(𝐵)

• If there is a production 𝐴 → 𝛼𝐵 or a production 𝐴 → 𝛼𝐵𝛽 where
𝐹𝑖𝑟𝑠𝑡(𝛽) contains 𝜖, then everything in 𝐹𝑜𝑙𝑙𝑜𝑤(𝐴) is in
𝐹𝑜𝑙𝑙𝑜𝑤(𝐵)

Top-down parsing 12

Follow Set Example
Generate the Follow set for the following grammar
𝐴 → 𝐵𝐷𝑖 | 𝐷
𝐵 → 𝐶𝑎 | ϵ
𝐶 → 𝑏
𝐷 → 𝑐

Do as an exercise.
• Place $ in 𝐹𝑜𝑙𝑙𝑜𝑤(𝑆) where 𝑆 is the start symbol and $ is the input right end marker

• If there is a production 𝐴 → 𝛼𝐵𝛽, then everything in 𝐹𝑖𝑟𝑠𝑡(𝛽) except for 𝜖 is placed in
𝐹𝑜𝑙𝑙𝑜𝑤(𝐵)

• If there is a production 𝐴 → 𝛼𝐵 or a production 𝐴 → 𝛼𝐵𝛽 where 𝐹𝑖𝑟𝑠𝑡(𝛽) contains 𝜖,
then everything in 𝐹𝑜𝑙𝑙𝑜𝑤(𝐴) is in 𝐹𝑜𝑙𝑙𝑜𝑤(𝐵)

Top-down parsing 13

Left Recursive Grammars
• A grammar is left-recursive if it has a non-terminal A such that

there is a derivation 𝐴 → 𝐴𝛼 for some string 𝛼

• Bad for a recursive decent parser - why?
• Consider the parse method for 𝐴 → 𝐴𝐵𝑐

• Need to eliminate the left recursion

Top-down parsing 14

private void parseA() { // A::=
parseA(); // A
parseB(); // B
accept(‘c’); // c

}

A® bA'
A' ® aA' | eÞA® Aa | b

Eliminate Left-Recursion
• What’s wrong with the following?
Command ::= single-Command | Command; single-Command

• Look at the First sets produced:

𝐹𝑖𝑟𝑠𝑡 Command = IdentiUier, if, while, let, begin

𝐹𝑖𝑟𝑠𝑡(single-Command) = {IdentiUier, if, while, let, begin }

• Eliminate the left recursion to produce:
Command ::= single-Command (; single-Command)*

Top-down parsing 15

Left-Recursion Example
Eliminate the left-recursion in the following grammar

(1) E ® E + T | T
(2) T ® T * F | F
(3) F ® (E) | Identifier

Top-down parsing 16

A® bA'
A' ® aA' | eÞA® Aa | b

(1) E ® TP
(2) P® + TP | e
(3) T ® FQ
(4) Q®* FQ | e
(5) F ® (E) | Identifier

Now generate the First
and Follow sets.

Is the grammar LL(1)?

Do Left-factoring
• Consider the following:
stmt ::= if expr then stmt else stmt

| if expr then stmt

• When the parser receives the if token, it does not know which
alternative to select
• Rewrite the grammar to eliminate the confusion
• How is this different from left-recursion?

Top-down parsing 17

